Электронный трансформатор как работает схема

Электронный трансформатор

Электронные трансформаторы приходят на смену громоздким трансформаторам со стальным сердечником. Сам по себе электронный трансформатор, в отличие от классического, представляет собой целое устройство – преобразователь напряжения.

image

Применяются такие преобразователи в освещении для питания галогенных ламп на 12 вольт. Если вы ремонтировали люстры с пультом управления, то, наверняка, встречались с ними.

Вот схема электронного трансформатора JINDEL (модель GET-03) с защитой от короткого замыкания.

image

Как видим, схема довольно проста и собрана из радиодеталей, которые легко обнаружить в любом электронном балласте для питания люминесцентных ламп, а также в лампах – “экономках”.

image

Основными силовыми элементами схемы являются n-p-n транзисторы MJE13009, которые включены по схеме полумост. Они работают в противофазе на частоте 30 — 35 кГц. Через них прокачивается вся мощность, подаваемая в нагрузку – галогенные лампы EL1. EL5. Диоды VD7 и VD8 необходимы для защиты транзисторов V1 и V2 от обратного напряжения. Симметричный динистор (он же диак) необходим для запуска схемы.

На транзисторе V3 (2N5551) и элементах VD6, C9, R9 — R11 реализована схема защиты от короткого замыкания на выходе (short circuit protection).

Если в выходной цепи произойдёт короткое замыкание, то возросший ток, протекающий через резистор R8, приведёт к срабатыванию транзистора V3. Транзистор откроется и заблокирует работу динистора DB3, который запускает схему.

Резистор R11 и электролитический конденсатор С9 предотвращают ложное срабатывание защиты при включении ламп. В момент включения ламп нити холодные, поэтому преобразователь выдаёт в начале пуска значительный ток.

Для выпрямления сетевого напряжения 220V используется классическая мостовая схема из 1,5-амперных диодов 1N5399.

В качестве понижающего трансформатора используется катушка индуктивности L2. Она занимает почти половину пространства на печатной плате преобразователя.

В силу своего внутреннего устройства, электронный трансформатор не рекомендуется включать без нагрузки. Поэтому, минимальная мощность подключаемой нагрузки составляет 35 — 40 ватт. На корпусе изделия обычно указывается диапазон рабочих мощностей. Например, на корпусе электронного трансформатора, что на первой фотографии указан диапазон выходной мощности: 35 — 120 ватт. Минимальная мощность нагрузки его составляет 35 ватт.

Галогенные лампы EL1. EL5 (нагрузку) лучше подключать к электронному трансформатору проводами не длиннее 3 метров. Так как через соединительные проводники протекает значительный ток, то длинные провода увеличивают общее сопротивление в цепи. Поэтому лампы, расположенные дальше будут светить тусклее, чем те, которые расположены ближе.

Также стоит учитывать и то, что сопротивление длинных проводов способствует их нагреву из-за прохождения значительного тока.

Стоит также отметить, что из-за своей простоты электронные трансформаторы являются источниками высокочастотных помех в сети. Обычно, на входе таких устройств ставится фильтр, который блокирует помехи. Как видим по схеме, в электронных трансформаторах для галогенных ламп нет таких фильтров. А вот в компьютерных блоках питания, которые собираются также по схеме полумоста и с более сложным задающим генератором, такой фильтр, как правило, монтируется.

Электронные трансформаторы для галогенных ламп на 12 В

В статье описаны так называемые электронные трансформаторы, по сути, представляющие собой импульсные понижающие преобразователи для питания галогенных ламп, рассчитанных на напряжение 12 В. Предложены два варианта исполнения трансформаторов — на дискретных элементах и с применением специализированной микросхемы.

Галогенные лампы являются, по сути, более усовершенствованной модификацией обычной лампы накаливания. Принципиальное отличие заключается в добавлении в колбу лампы паров соединений галогенов, которые блокируют активное испарение металла с поверхности нити накала во время работы лампы. Это позволяет разогревать нить накала до более высоких температур, что даёт более высокую светоотдачу и более равномерный спектр излучения. Помимо этого, увеличивается срок службы лампы. Эти и другие особенности делают галогенную лампу весьма привлекательной для домашнего освещения, и не только. Промышленно выпускается широкий ассортимент галогенных ламп различной мощности на напряжение 230 и 12 В. Лампы с напряжением питания 12 В обладают лучшими техническими характеристиками и большим ресурсом по сравнению с лампами на 230 В, не говоря уже об электробезопасности. Для питания таких ламп от сети 230 В необходимо уменьшить напряжение. Можно, конечно, применить обычный сетевой понижающий трансформатор, но это дорого и нецелесообразно. Оптимальный выход — использовать понижающий преобразователь 230 В/12 В, часто называемый в таких случаях электронным трансформатором или галогенным конвертором (halogen convertor). О двух вариантах таких устройств и пойдёт речь в этой статье, оба рассчитаны на мощность нагрузки 20. 105 Вт.

Один из наиболее простых и распространённых вариантов схемных решений для понижающих электронных трансформаторов — это полумостовой преобразователь с положительной обратной связью по току, схема которого приведена на рис. 1. При подключении устройства к сети конденсаторы С3 и С4 быстро заряжаются до амплитудного напряжения сети, формируя половинное напряжение в точке соединения. Цепь R5C2VS1 формирует запускающий импульс. Как только напряжение на конденсаторе С2 достигнет порога открывания динистора VS1 (24.32 В), он откроется и к базе транзистора VT2 будет приложено прямое напряжение смещения. Этот транзистор откроется, и ток потечёт по цепи: общая точка конденсаторов С3 и С4, первичная обмотка трансформатора Т2, обмотка III трансформатора Т1, участок коллектор — эмиттер транзистора VT2, минусовый вывод диодного моста VD1. На обмотке II трансформатора Т1 появится напряжение, поддерживающее транзистор VT2 в открытом состоянии, при этом к базе транзистора VT1 будет приложено обратное напряжение от обмотки I (обмотки I и II включены противофазно). Протекающий через обмотку III трансформатора Т1 ток быстро введёт его в состояние насыщения. Вследствие этого напряжение на обмотках I и II Т1 устремится к нулю. Транзистор VT2 начнёт закрываться. Когда он почти полностью закроется, трансформатор станет выходить из насыщения.

Рис. 1. Схема полумостового преобразователя с положительной обратной связью по току

Закрывание транзистора VT2 и выход из насыщения трансформатора Т1 приведут к изменению направления ЭДС и росту напряжения на обмотках I и II. Теперь к базе транзистора VT1 будет приложено прямое напряжение, ак базе VT2 — обратное. Транзистор VT1 начнёт открываться. Ток потечёт по цепи: плюсовой вывод диодного моста VD1, участок коллектор — эмиттер VT1, обмотка III Т1, первичная обмотка трансформатора Т2, общая точка конденсаторов С3 и С4. Далее процесс повторяется, а в нагрузке формируется вторая полуволна напряжения. После запуска диод VD4 поддерживает в разряженном состоянии конденсатор С2. Поскольку в преобразователе не используется сглаживающий оксидный конденсатор (в нём нет необходимости при работе на лампу накаливания, даже, наоборот, его присутствие ухудшает коэффициент мощ-ности устройства), то по окончании полупериода выпрямленного напряжения сети генерация прекратится. С приходом следующего полупериода генератор запустится снова. В результате работы электронного трансформатора на его выходе формируются близкие по форме к синусоидальным колебания частотой 30. 35 кГц (рис. 2), следующие пачками с частотой 100 Гц (рис. 3).

Рис. 2. Близкие по форме к синусоидальным колебания частотой 30. 35 кГц

Рис. 3. Колебания частотой 100 Гц

Важная особенность подобного преобразователя — он не запустится без нагрузки, поскольку при этом ток через обмотку III Т1 будет слишком мал, и трансформатор не войдёт в насыщение, процесс автогенерации сорвётся. Эта особенность делает ненужной защиту от режима холостого хода. Устройство с указанными на рис. 1 номиналами стабильно запускается при мощности нагрузки от 20 Вт.

На рис. 4 приведена схема усовершенствованного электронного трансформатора, в который добавлены помехоподавляющий фильтр и узел защиты от короткого замыкания в нагрузке. Узел защиты собран на транзисторе VT3, диоде VD6, стабилитроне VD7, конденсаторе C8 и резисторах R7-R12. Резкое увеличение тока нагрузки приведёт к увеличению напряжения на обмотках I и II трансформатора Т1 с 3. 5 В в номинальном режиме до 9. 10 В в режиме короткого замыкания. В результате на базе транзистора VT3 появится напряжение смещения 0,6 В. Транзистор откроется и зашунтирует конденсатор цепи запуска С6. В результате со следующим полупериодом выпрямленного напряжения генератор не запустится. Конденсатор С8 обеспечивает задержку отключения защиты около 0,5 с.

Рис. 4. Схема усовершенствованного электронного трансформатора

Второй вариант электронного понижающего трансформатора показан на рис. 5. Он более прост в повторении, поскольку в нём нет одного трансформатора, при этом более функционален. Это тоже полумостовой преобразователь, но под управлением специализированной микросхемы IR2161S. В микросхему встроены все необходимые защитные функции: от пониженного и повышенного напряжения сети, от режима холостого хода и короткого замыкания в нагрузке, от перегрева. Также IR2161S обладает функцией мягкого старта, который заключается в плавном нарастании напряжения на выходе при включении от 0 до 11,8 В в течение 1 с. Это исключает резкий бросок тока через холодную нить лампы, что значительно, иногда в несколько раз, повышает срок её службы.

Рис. 5. Второй вариант электронного понижающего трансформатора

В первый момент, а также с приходом каждого последующего полупериода выпрямленного напряжения питание микросхемы осуществляется через диод VD3 от параметрического стабилизатора на стабилитроне VD2. Если питание осуществляется напрямую от сети 230 В без использования фазового регулятора мощности (диммера), то цепь R1-R3C5 не нужна. После входа в рабочий режим микросхема дополнительно питается с выхода полумоста через цепь d2VD4VD5. Сразу же после запуска частота внутреннего тактового генератора микросхемы — около 125 кГц, что значительно выше частоты выходного контура С13С14Т1, в результате напряжение на вторичной обмотке трансформатора Т1 будет мало. Внутренний генератор микросхемы управляется напряжением, его частота обратно пропорциональна напряжению на конденсаторе С8. Сразу же после включения этот конденсатор начинает заряжаться от внутреннего источника тока микросхемы. Пропорционально росту напряжения на нём будет уменьшаться частота генератора микросхемы. Когда напряжение на конденсаторе достигнет 5 В (приблизительно через 1 с после включения), частота уменьшится до рабочего значения около 35 кГц, а напряжение на выходе трансформатора достигнет номинального значения 11,8 В. Так реализован мягкий старт, после его завершения микросхема DA1 переходит в рабочий режим, в котором вывод 3 DA1 можно использовать для управления выходной мощностью. Если параллельно конденсатору С8 подключить переменный резистор сопротивлением 100 кОм, можно, изменяя напряжение на выводе 3 DA1, управлять выходным напряжением и регулировать яркость свечения лампы. При изменении напряжения на выводе 3 микросхемы DA1 от 0 до 5 В частота генерации будет меняться от 60 до 30 кГц (60 кГц при 0 В — минимальное напряжение на выходе и 30 кГц при 5 В — максимальное).

Вход CS (вывод 4) микросхемы DA1 является входом внутреннего усилителя сигнала ошибки и используется для контроля тока нагрузки и напряжения на выходе полумоста. В случае резкого увеличения тока нагрузки, например, при коротком замыкании, падение напряжения на датчике тока — резисторах R12 и R13, а следовательно, и на выводе 4 DA1 превысит 0,56 В, внутренний компаратор переключится и остановит тактовый генератор. В случае же обрыва нагрузки напряжение на выходе полумоста может превысить предельно допустимое напряжение транзисторов VT1 и VT2. Чтобы избежать этого, к входу CS через диод VD7 подключён резистивно-ёмкостный делитель C10R9. При превышении порогового значения напряжения на резисторе R9 генерация также прекращается. Более подробно режимы работы микросхемы IR2161S рассмотрены в [1].

Рассчитать число витков обмоток выходного трансформатора для обоих вариантов можно, например, с помощью простой методики расчёта [2], выбрать подходящий магнитопровод по габаритной мощности можно с помощью каталога [3].

Согласно [2], число витков первичной обмотки равно

где Uc max — максимальное напряжение сети, В; t0 max — максимальное время открытого состояния транзисторов, мкс; S — площадь поперечного сечения магнитопровода, мм 2 ; Bmax— максимальная индукция, Тл.

Число витков вторичной обмотки

где k — коэффициент трансформации, в нашем случае можно принять k = 10.

Чертёж печатной платы первого варианта электронного трансформатора (см. рис. 4) приведён на рис. 6, расположение элементов — на рис. 7. Внешний вид собранной платы показан на рис. 8. обложки. Электронный трансформатор собран на плате из фольгированного с одной стороны стеклотекстолита толщиной 1,5 мм. Все элементы для поверхностного монтажа установлены со стороны печатных проводников, выводные — на противоположной стороне платы. Большинство деталей (транзисторы VT1, VT2, трансформатор Т1, динистор VS1, конденсаторы С1-С5, С9, С10) подойдут от массовых дешёвых электронных балластов для люминесцентных ламп типа Т8, например, Tridonic PC4x18 T8, Fintar 236/418, Cimex CSVT 418P, Komtex EFBL236/418, TDM Electric EB-T8-236/418 и др., поскольку они имеют схожую схемотехнику и элементную базу. Конденсаторы С9 и С10 — металлоплёночные полипропиленовые, рассчитанные на большой импульсный ток и переменное напряжение не менее 400 В. Диод VD4 — любой быстродействующий с допустимым обратным на рис 11 пряжением не менее 150 В.

Рис. 6. Чертёж печатной платы первого варианта электронного трансформатора

Рис. 7. Расположение элементов на плате

Рис. 8. Внешний вид собранной платы

Трансформатор Т1 намотан на кольцевом магнитопроводе с магнитной проницаемостью 2300 ±15 %, его внешний диаметр — 10,2 мм, внутренний диаметр — 5,6 мм, толщина — 5,3 мм. Обмотка III (5-6) содержит один виток, обмотки I (1-2) и II (3-4) — по три витка провода диаметром 0,3 мм. Индуктивность обмоток 1-2 и 3-4 должна быть 10. 15 мкГн. Выходной трансформатор Т2 намотан на магнитопроводе EV25/13/13 (Epcos) без немагнитного зазора, материал N27. Его первичная обмотка содержит 76 витков провода 5×0,2 мм. Вторичная обмотка содержит восемь витков литцендрата 100×0,08 мм. Индуктивность первичной обмотки равна 12 ±10 % мГн. Дроссель помехоподавляющего фильтра L1 намотан на маг-нитопроводе Е19/8/5, материал N30, каждая обмотка содержит по 130 витков провода диаметром 0,25 мм. Можно применить подходящий по габаритам стандартный двухобмоточный дроссель индуктивностью 30. 40 мГн. Конденсаторы С1, С2 желательно применить Х-класса.

Чертёж печатной платы второго варианта электронного трансформатора (см. рис. 5) показан на рис. 9, расположение элементов — на рис. 10. Плата также изготовлена из фольгированного с одной стороны стеклотекстолита, элементы для поверхностного монтажа расположены со стороны печатных проводников, выводные — на противоположной стороне. Внешний вид готового устройства приведён на рис. 11 и рис. 12. Выходной трансформатор Т1 намотан накольцевом магнитопроводе R29.5 (Epcos), материал N87. Первичная обмотка содержит 81 виток провода диаметром 0,6 мм, вторичная — 8 витков провода 3×1 мм. Индуктивность первичной обмотки равна 18 ±10 % мГн, вторичной — 200 ±10 % мкГн. Трансформатор Т1 рассчитывался на максимальную мощность до 150 Вт, для подключения такой нагрузки транзисторы VT1 и VT2 необходимо установить на теплоотвод — алюминиевую пластину площадью 16. 18 мм 2 , толщиной 1,5. 2 мм. При этом, правда, потребуется соответствующая переделка печатной платы. Также выходной трансформатор можно применить от первого варианта устройства (потребуется добавить на плате отверстия под иное расположение выводов). Транзисторы STD10NM60N (VT1, VT2) можно заменить на IRF740AS или аналогичные. Стабилитрон VD2 должен быть мощностью не менее 1 Вт, напряжение стабилизации — 15,6. 18 В. Конденсатор С12 — желательно дисковый керамический на номинальное постоянное напряжение 1000 В. Конденсаторы С13, С14 — металлопленочные полипропиленовые, рассчитанные на большой импульсный ток и переменное напряжение не менее 400 В. Каждую из резистивных цепей R4-R7, R14-R17, R18-R21 можно заменить одним выводным резистором соответствующих сопротивления и мощности, но при этом потребуется изменить печатную плату.

Рис. 9. Чертёж печатной платы второго варианта электронного трансформатора

Рис. 10. Расположение элементов на плате

Рис. 11. Внешний вид готового устройства

Рис. 12. Внешний вид собранной платы

1. IR2161 (S) & (PbF). Halogen convertor control IC. — URL: http://www.irf.com/product-info/datasheets/data/ir2161.pdf (24.04.15).

2. Peter Green. 100VA dimmable electronic convertor for low voltage lighting. — URL: http:// www.irf.com/technical-info/refdesigns/ irplhalo1e.pdf (24.04.15).

3. Ferrites and Accessories. — URL: http:// en.tdk.eu/tdk-en/1 80386/tech-library/ epcos-publications/ferrites (24.04.15).

Автор: В. Лазарев, г. Вязьма Смоленской обл.

Мнения читателей
  • Веселин / 08.11.2017 — 22:18

Какие электронные трансформаторы из представленных на рынке с им 2161 или подобные

Здрвствуйте, можно ли вместо трансформатора на 160вт поставить на 180вт? Спасибо.

Я переделывал вот такие http://ali.pub/7w6tj

Здравствуйте!Нельзя ли узнать частоту переменного напряжения на выходе трансформатора для галогенных ламп?Спасибо.

Вы можете оставить свой комментарий, мнение или вопрос по приведенному выше материалу:

Как устроен электронный трансформатор

imageВнешне электронный трансформатор представляет собой небольшой металлический, как правило, алюминиевый корпус, половинки которого скреплены всего двумя заклепками. Впрочем, некоторые фирмы выпускают подобные устройства и в пластиковых корпусах.

Чтобы посмотреть, что же там внутри, эти заклепки можно просто высверлить. Такую же операцию предстоит проделать, если намечается переделка или ремонт самого устройства. Хотя при его низкой цене куда проще пойти и купить другое, чем ремонтировать старое. И все же нашлось немало энтузиастов, которые не только сумели разобраться в устройстве прибора, но и разработать на его основе несколько импульсных блоков питания.

Принципиальная схема к устройству не прилагается, как и ко всем нынешним электронным устройствам. Но схема достаточно проста, содержит малое количество деталей и поэтому принципиальную схему электронного трансформатора можно срисовать с печатной платы.

На рисунке 1 показана снятая подобным образом схема трансформатора фирмы Taschibra. Очень похожую схему имеют преобразователи, выпускаемые фирмой Feron. Отличие лишь в конструкции печатных плат и типах используемых деталей, в основном трансформаторов: в преобразователях Feron выходной трансформатор выполнен на кольце, в то время как в преобразователях Taschibra на Ш-образном сердечнике.

В обоих случаях сердечники выполнены из феррита. Следует сразу отметить, что кольцеобразные трансформаторы при различных доработках прибора лучше поддаются перемотке, чем Ш – образные. Поэтому, если электронный трансформатор приобретается для опытов и переделок, лучше купить прибор фирмы Feron.

При использовании электронного трансформатора лишь для питания галогенных ламп название фирмы – изготовителя значения не имеет. Единственное, на что следует обратить внимание, это на мощность: электронные трансформаторы выпускаются мощностью 60 — 250 Вт.

image

Рисунок 1. Схема электронного трансформатора фирмы Taschibra

Краткое описание схемы электронного трансформатора, ее достоинства и недостатки

Как видно из рисунка, устройство представляет собой двухтактный автогенератор, выполненный по полумостовой схеме. Два плеча моста выполнены на транзисторах Q1 и Q2, а два других плеча содержат конденсаторы C1 и C2, поэтому такой мост называется полумостом.

В одну из его диагоналей подается сетевое напряжение, выпрямленное диодным мостом, а в другую включена нагрузка. В данном случае это первичная обмотка выходного трансформатора. По очень похожей схеме выполнены электронные балласты для энергосберегающих ламп, но в них вместо трансформатора включен дроссель, конденсаторы и нити накала люминесцентных ламп.

Для управления работой транзисторов в их базовые цепи включены обмотки I и II трансформатора обратной связи Т1. Обмотка III это обратная связь по току, через нее подключена первичная обмотка выходного трансформатора.

Управляющий трансформатор Т1 намотан на ферритовом кольце с внешним диаметром 8 мм. Базовые обмотки I и II содержат по 3..4 витка, а обмотка обратной связи III – всего один виток. Все три обмотки выполнены проводами в разноцветной пластиковой изоляции, что немаловажно при экспериментах с устройством.

На элементах R2, R3, C4, D5, D6 собрана цепь запуска автогенератора в момент включения всего устройства в сеть. Выпрямленное входным диодным мостом напряжение сети через резистор R2 заряжает конденсатор C4. Когда напряжение на нем превысит порог срабатывания динистора D6, последний открывается и на базе транзистора Q2 формируется импульс тока, который запускает преобразователь.

Дальнейшая работа осуществляется без участия цепи запуска. Следует заметить, что динистор D6 двухсторонний, может работать в цепях переменного тока, в случае постоянного тока полярность включения значения не имеет. В интернете его также называют «диак».

Сетевой выпрямитель выполнен на четырех диодах типа 1N4007, резистор R1 с сопротивлением 1Ом и мощностью 0, 125Вт используется в качестве предохранителя.

Схема преобразователя в том виде, как она есть, достаточно проста и не содержит никаких «излишеств». После выпрямительного моста не предусмотрено даже просто конденсатора для сглаживания пульсаций выпрямленного сетевого напряжения.

Выходное напряжение прямо с выходной обмотки трансформатора также безо всяких фильтров подается прямо на нагрузку. Отсутствуют цепи стабилизации выходного напряжения и защиты, поэтому при коротком замыкании в цепи нагрузки сгорают сразу несколько элементов, как правило, это транзисторы Q1, Q2, резисторы R4, R5, R1. Ну, может и не все сразу, но хотя бы один транзистор точно.

И несмотря на такое, казалось бы, несовершенство схема себя вполне оправдывает при использовании его в штатном режиме, т.е. для питания галогенных ламп. Простота схемы обуславливает ее дешевизну и широкую распространенность устройства в целом.

Исследование работы электронных трансформаторов

Если к электронному трансформатору подключить нагрузку, например, галогенную лампу 12В х 50Вт, а к этой нагрузке подключить осциллограф, то на его экране можно будет увидеть картинку, показанную на рисунке 2.

image

Рисунок 2. Осциллограмма выходного напряжения электронного трансформатора Taschibra 12Vх50W

Выходное напряжение представляет собой высокочастотные колебания частотой 40КГц, модулированные на 100% частотой 100ГЦ, полученной после выпрямления сетевого напряжения частотой 50ГЦ, что вполне подходит для питания галогенных ламп. В точности такая же картинка будет получена для преобразователей другой мощности или другой фирмы, ведь схемы практически не отличаются друг от друга.

Если к выходу выпрямительного моста подключить электролитический конденсатор C4 47uFх400V, как показано пунктирной линией на рисунке 4, то напряжение на нагрузке примет вид, показанный на рисунке 4.

image

Рисунок 3. Подключение конденсатора к выходу выпрямительного моста

image

Рисунок 4. Напряжение на выходе преобразователя после подключения конденсатора C5

Однако, не следует забывать о том, что ток зарядки дополнительно подключенного конденсатора C4 приведет к перегоранию, причем достаточно шумному, резистора R1, который используется в качестве предохранителя. Поэтому этот резистор следует заменить более мощным резистором с номиналами 22Омх2Вт, назначение которого просто ограничить ток зарядки конденсатора С4. В качестве же предохранителя следует использовать обычный плавкий предохранитель на 0,5А.

Нетрудно заметить, что модуляция с частотой 100Гц прекратилась, остались лишь высокочастотные колебания с частотой около 40КГц. Даже если при этом исследовании и нет возможности воспользоваться осциллографом, то этот неоспоримый факт можно заметить по некоторому увеличению яркости лампочки.

Это говорит о том, что электронный трансформатор вполне пригоден для создания несложных импульсных блоков питания. Тут возможно несколько вариантов: использование преобразователя без разборки, только за счет добавления наружных элементов и с небольшими изменениями схемы, совсем небольшими, но придающими преобразователю совсем иные свойства. Но об этом более подробно мы поговорим в следующей статье.

Надеюсь, что эта статья была для вас полезной. Смотрите также другие статьи в категории Практическая электроника, Электрические приборы и устройства

Подписывайтесь на канал в Telegram про электронику для профессионалов и любителей: Практическая электроника на каждый день

Электронные трансформаторы. Схемы, фото, обзоры

Электронные трансформаторы для галогенных ламп (ЭТ) – не теряющая актуальности тема как среди бывалых, так и очень посредственных радиолюбителей. И это не удивительно, ведь они весьма просты, надежны, компактны, легко поддаются доработке и усовершенствованию, чем существенно расширяют сферу применения. А в связи с массовым переходом светотехники на светодиодные технологии ЭТ морально устарели и сильно упали в цене, что, как по мне, стало чуть ли не главным их преимуществом в радиолюбительской практике.

Про ЭТ есть много различной информации относительно преимуществ и недостатков, устройства, принципа работы, доработки, модернизации и т.д. А вот найти нужную схему, особенно качественных устройств, или приобрести блок с нужной комплектацией бывает весьма проблематично. Поэтому в этой статье я решил изложить фото, срисованные схемы с моточными данными и краткие обзоры тех устройств, которые попадались (попадутся) мне в руки, а в следующей статье планирую описать несколько вариантов переделок конкретных ЭТ из этой темы.

Все ЭТ для наглядности я условно делю на три группы:

  1. Дешевые ЭТ или «типичный Китай». Как правило только базовая схема из самых дешевых элементов. Зачастую сильно греются, низкий КПД, при незначительном перегрузе или КЗ сгорают. Иногда попадается «фабричный Китай», отличающийся более качественными деталями, но все равно далекий от совершенства. Самый распространенный вид ЭТ на рынке и в обиходе.
  2. Хорошие ЭТ. Главное отличие от дешевых — наличие защиты от перегрузки (КЗ). Надежно держат нагрузку вплоть до срабатывания защиты (обычно до 120-150%). Комплектация дополнительными элементами: фильтрами, защитами, радиаторами происходит в произвольном порядке.
  3. Качественные ЭТ, отвечающие высоким европейским требованиям. Хорошо продуманны, комплектуются по максимуму: хорошим теплоотводом, всеми видами защит, плавным пуском галогенок, входными и внутренними фильтрами, демпферными, а иногда и снабберными цепями.

Теперь давайте перейдем к самим ЭТ. Для удобства они отсортированы по выходной мощности в порядке возрастания.

1. ЭТ мощностью до 60 Вт.

1.1. L&B

image

image

1.2. Tashibra

image

image

Два вышеизложенные ЭТ – типичные представители самого дешевого Китая. Схема, как видите, типовая и широко распространенная в интернете.

1.3. Horoz HL370

image

image

Фабричный Китай. Хорошо держит номинальную нагрузку, греется не сильно.

1.4. Relco Minifox 60 PFS-RN1362

image

image

А вот представитель хорошего ЭТ итальянского производства, оснащенный скромным входным фильтром и защитами от перегрузки, перенапряжения и перегрева. Силовые транзисторы выбраны с запасом по мощности, поэтому не требуют радиаторов.

2. ЭТ мощностью 105 Вт.

2.1. Horoz HL371

image

image

Подобный вышеизложенной модели Horoz HL370 (п.1.3.) фабричный Китай.

2.2. Feron TRA110-105W

image

image

На фото две версии: слева более старая (2010 г.в.) – фабричный Китай, справа более новая (2013 г.в.), удешевленная до типичного Китая.

2.3. Feron ET105

Подобный Feron TRA110-105W (п.2.2.) фабричный Китай. Фото родной платы не сохранилось, поэтому взамен выкладываю фото Feron ET150, плата которого очень похожа на вид и подобна по элементной базе.

2.4. Brilux BZE-105

Подобный Relco Minifox 60 PFS-RN1362 (п.1.4.) хороший ЭТ.

3. ЭТ мощностью 150 Вт.

3.1. Buko BK452

Удешевленный до фабричного Китая ЭТ, в который не впаяли модуль защиты от перегрузки (КЗ). А так, блок весьма неплох по форме и содержанию.

3.2. Horoz HL375 (HL376, HL377)

А вот и представитель качественных ЭТ с весьма богатой комплектацией. Сразу кидается в глаза шикарный входной двухкаскадный фильтр, мощные парные силовые ключи с объемным радиатором, защиты от перегруза (КЗ), перегрева и двойная защита от перенапряжения. Данная модель знаменательна еще и тем, что является флагманской для последующих: HL376 (200W) и HL377 (250W). Отличия отмечены на схеме красным цветом.

3.3. Vossloh Schwabe EST 150/12.645

Очень качественный ЭТ от всемирно известного немецкого производителя. Компактный, хорошо продуманный, мощный блок с элементной базой от лучших европейских фирм.

3.4. Vossloh Schwabe EST 150/12.622

Не менее качественная, более новая версия предыдущей модели (EST 150/12.645), отличающаяся большей компактностью и некоторыми схемными решениями.

3.5. Brilux BZ-150B (Kengo Lighting SET150CS)

Один из самых качественных ЭТ, которые мне попадались. Очень хорошо продуманный блок на очень богатой элементной базе. Отличается от подобной модели Kengo Lighting SET150CS только трансформатором связи, который чуть меньше размером (10х6х4мм) с количеством витков 8+8+1. Уникальность этих ЭТ состоит в двухступенчатой защите от перегрузки (КЗ), первая из которых самовосстанавливающаяся, настроена на плавный пуск галогенных ламп и легкий перегруз (до 30-50%), а вторая – блокирующая, срабатывает при перегрузе более 60% и требующая перезагрузки блока (кратковременное отключение с последующим включением). Также примечательностью является довольно большой силовой трансформатор, габаритная мощность которого позволяет выжимать с него до 400-500 Вт.

Мне лично в руки не попадались, но видел на фото подобные модели в том же корпусе и с тем же набором элементов на 210Вт и 250Вт.

4. ЭТ мощностью 200-210 Вт.

4.1. Feron TRA110-200W (250W)

Подобный Feron TRA110-105W (п.2.2.) фабричный Китай. Наверное, лучший в своем классе блок, рассчитанный с большим запасом мощности, а посему является флагманской моделью для абсолютно идентичного Feron TRA110-250W, выполненного в таком же корпусе.

4.2. Delux ELTR-210W

По максимуму удешевленный, немного топорный ЭТ с множеством не впаянных деталей и теплоотводом силовых ключей на общий радиатор через кусочки электрокартона, который можно отнести к хорошим только из-за наличия защиты от перегруза.

4.3. Светкомплект EK210

Согласно электронной начинке подобный предыдущему Delux ELTR-210W (п.4.2.) хороший ЭТ с силовыми ключами в корпусе TO-247 и двухступенчатой защитой от перегруза (КЗ), не смотря на которую достался сгоревшим, причем практически полностью, вместе с модулями защиты (отчего отсутствуют фото). После полного восстановления при подключении нагрузки близкой к максимальной снова сгорел. Поэтому ничего толкового про этот ЭТ сказать не могу. Возможно брак, а возможно и плохо продуман.

4.4. Kanlux SET210-N

Без лишних слов довольно качественный, хорошо продуманный и очень компактный ЭТ.

ЭТ мощностью 200Вт можно также найти в п.3.2.

5. ЭТ мощностью 250 Вт и более.

5.1. Lemanso TRA25 250W

Типичный Китай. Та же общеизвестная Tashibra или жалкое подобие Feron TRA110-200W (п.4.1.). Даже не смотря на мощные спаренные ключи с трудом держит заявленные характеристики. Плата досталась искореженная, без корпуса, посему фото оных отсутствует.

5.2. Asia Elex GD-9928 250W

По сути усовершенствованная до хорошего ЭТ модель TRA110-200W (п.4.1.). До половины залита в корпусе теплопроводным компаундом, что значительно усложняет его разборку. Если такой попадется и потребуется разборка, поставьте его в морозилку на несколько часов, а после в темпе отламывайте по кусочкам застывший компауд, пока он не нагрелся и снова не стал вязким.

Следующая по мощности модель Asia Elex GD-9928 300W имеет идентичный корпус и схему.

ЭТ мощностью 250Вт можно также найти в п.3.2. и п.4.1.

Ну вот, пожалуй, и все ЭТ на сегодняшний момент. В заключение опишу некоторые нюансы, особенности и дам парочку советов.

Многие производители, особенно дешевых ЭТ, выпускают данную продукцию под разными названиями (брендами, типами) используя одну и ту же схему (корпус). Поэтому при поиске схемы следует более обращать внимание на ее подобность, нежели на название (тип) устройства.

Определить по корпусу качество ЭТ практически невозможно, поскольку, как видно на некоторых фото, модель может быть недоукомплектованной (с отсутствующими деталями).

Корпуса хороших и качественных моделей как правило выполнены из качественного пластика и разбираются довольно легко. Дешевые нередко скрепляются заклепками, а иногда и склеиваются.

Если после разборки определение качества ЭТ затруднительно, обратите внимание на печатную плату – дешевые обычно монтируются на гетинаксе, качественные – на текстолите, хорошие, как правило, тоже на текстолите, но бывают и редкие исключения. Про многое скажет и количество (объем, плотность) радиодеталей. Индуктивные фильтра в дешевых ЭТ всегда отсутствуют.

Также в дешевых ЭТ теплоотвод силовых транзисторов либо полностью отсутствует, либо выполнен на корпус (металлический) через электрокартон или ПВХ пленку. В качественных и многих хороших ЭТ он выполнен на объемном радиаторе, который обычно изнутри плотно прилегает к корпусу, также используя его для рассеивания тепла.

Присутствие защиты от перегрузки (КЗ) можно определить по наличию хотя-бы одного дополнительного маломощного транзистора и низковольтного электролитического конденсатора на плате.

Если планируется приобретение ЭТ, то обратите внимание, что есть много флагманских моделей, которые по цене обойдутся дешевле, чем их «более мощные» копии. Электронные трансформаторы на AliExpress.

Жизненных и творческих всем успехов.

alex123al97 Опубликована: 16.10.2017 Изменена: 25.02.2018 10 Вознаградить Я собрал 0 14

Оценить статью

  • Техническая грамотность

Средний балл статьи: 5 Проголосовало: 14 чел.

Комментарии (124) | Я собрал ( 0 ) | Подписаться

Для добавления Вашей сборки необходима регистрация

+3 +4 [Автор] +1

+6 [Автор] +1 +4 [Автор]

+1 [Автор] [Автор]

+1 [Автор]

+1 [Автор] +2

1,5 раза ниже. То есть, улучшается использование транзисторов по току.

+1 [Автор]

+1

+1 [Автор] +2

[Автор] +2 [Автор] +2 +1 [Автор] +2 [Автор] +2 [Автор] +2 [Автор] [Автор] [Автор]

[Автор]

+2 [Автор]

[Автор] [Автор]

[Автор]

[Автор]

+2 [Автор]

[Автор] +1 [Автор] +1

[Автор]

[Автор]

[Автор]

[Автор]

+1 [Автор] -1

[Автор] +1

[Автор]

-1 [Автор]

[Автор]

Огромное спасибо за ценную информацию! Также буду пробовать запитать шуруповёрт от электронного трансформатора, воспользовавшись Вашими бесценными наработками. Имею в наличии шуруповёрт на 14,4 В. Приобрёл отсутствующий здесь трансформатор ET-250 («Colux», но такие же есть и с другой торговой маркой — см. аналогичный на 200 Вт видео ). Схему пришлось рисовать. Там очень добротный, максимально заполненный выходной трансформатор на Ш-образном сердечнике, выходную обмотку в виде косы можно «расплести», организовав 8х12 В, или среднюю точку для выпрямителя на сборке диодов Шоттки. По два MJE13009 в каждом плече (э,к,б запараллелены без токоуравнивающих резисторов). Помехоподавление: 0,47 мкф на входе и дальше подключение моста через дроссель. 1:1 как в компактных люминесцентных лампах. Защита (лишь профилактическая) от случайного кратковременного к.з. Защита блокирует цепь запуска на DB3. Шунтирование цепи запуска коллекторами ключей нижнего плеча в режиме автогенерации (через диод) не применяется. Базовые резисторы ключей форсированы параллельно подсоединёнными неполярными электролитами 1мкф на 50В, как в схеме Brilux BZ-150B (Kengo Lighting SET150CS). Малодоступные неполярные электролиты только из-за того, что сэкономили на шунтирующих эти цепи диодах, что есть в схеме Brilux. Для размещения в аккумуляторном отсеке длинную плату придётся пилить, отделяя кусок платы с трансформатором. Ну, пока только экспериментирую.

Поизучал выложенные Вами схемы. Я почти уверен, что в схеме Vossloh Schwabe EST 150/12.622, Vossloh Schwabe EST 150/12.645 минус с диодного моста надо отсоединить, и соединить с эмиттером транзистора защиты BC846. Так намного логичнее с точки зрения съёма напряжения при измерения тока ключей. Потому и написал.

Пардон, срисовывая свою схему, сам допустил ошибку. 🙁 Шунтирование цепи запуска DB3 коллекторами ключей нижнего плеча в режиме автогенерации таки осуществляется, но не с помощью одного диода, а диода и стабилитрона на 24 В, по образцу Vossloh Schwabe EST 150/12.622. Стабилитрон препятствует полному разряду конденсатора цепи, оставляя на нём примерно 24 В напряжения. При снятии блокировки конденсатор куда быстрее зарядится до необходимых для пробивания DB3 32 В. Транзистор защиты выполнен в виде составного (схема Дарлингтона без шунтирования б-э выходного транзистора с помощью резистора ) на двух 2SC1815. Это позволило выбрать высокоомные резисторы на входе транзистора: не 82 и 18 кОм, а 100 и 200 кОм. Конденсатор в защите — 47,0 мкФ. Стабилитрон задержки срабатывания защиты (зашунтирован резистором 360 Ом), в отличие от Vossloh Schwabe EST 150/12.622, не 4,7, а 3,0 В. Ток ключей измеряется проще: непосредственно по падению напряжения на общем резисторе в цепи запараллеленных эмиттеров нижнего плеча ключей — 0,24 Ом. Естественно, составной транзистор защиты полностью разряжает конденсатор цепи запуска (без какого-либо ограничивающего стабилитрона).

Ну а реализация триггерной защиты в Brilux BZ-150B (Kengo Lighting SET150CS) возможна лишь при условии, что при блокировании генератора напряжение на выходе силового моста не уменьшается до нуля, остаётся как можно бОльшим (на выходе моста есть два конденсатора по 0,22 мкФ. Тиристору нужен ток удержания 0,5-2 мА (по паспорту), а течёт он через резистор 180кОм с выхода силового моста. Конденсаторы на выходе моста — редкость. В моём ET-250 («Colux») он предусмотрен, в одном экземпляре впаян (0,1 мкФ на 630 В), в другом отсутствует. Да, забыл сказать, что в ET-250 («Colux») параллельно входу сети, после предохранителя, стоит варистор от перенапряжения. Трансформатор насыщения на колечке стандартного размера с обмоточными данными 8,5 + 8,5 + 0,5 (грубо: 9 + 9 + 1). Выходной трансформатор, упаси Боже, разбирать не намерен.

Один из экземпляров ET-250 («Colux») мне достался. сгоревшим. Наверно надолго его коротнули. Сгорел один из 13009D в нижнем плече ключей (с обратным диодом, хотя в схеме диоды есть, и можно ставить обычные 13009). В двух других, абсолютно не «посиневших» от перегрева, есть некоторая утечка б-к, что как-то компенсируется включением низкоомного резистора в цепи э-б (в схеме есть). Но такая утечка может способствовать сгоранию транзистора при нагреве, что могло быть причиной сгорания трансформатора из-за некачественных 13009D. Один слегка «посиневший» 13009 остался невредимым. Оплавились и «пробились» изоляционные прокладки под скобками, крепящими ключи к общему большому радиатору (см. видео по ссылке выше). Ну как не сгореть транзисторам нижнего плеча, если их корпус-коллектор через радиатор соединяется с корпусом-коллектором транзисторов верхнего плеча, соединённым с плюсом питания? Сгорел общий эмиттерный резистор 0,24 Ом нижнего плеча ключей, потому сгорели транзисторы защиты, и закоротил её стабилитрон 3,0 В. Закоротил DB3. Закоротили два диода силового моста — RL207, сгорел предохранитель 2,5 А.

[Автор]

[Автор]

[Автор] [Автор]

[Автор]

[Автор]

[Автор]

[Автор]

[Автор] [Автор]

[Автор]

[Автор]

[Автор]

Ссылка на основную публикацию
Похожее
Контакты
Шоссе космонавтов, Пермь
Контакты
Шоссе космонавтов, Пермь
Made on
Tilda