Как сделать зарядку для литий ионных аккумуляторов
СмартПульс — держите руку на пульсе высоких технологий! Новости, статьи, обзоры мобильных устройств, компьютеров, комплектующих, радиолюбительских конструкций
Главная — DIY (Сделай сам!) — Питание электронных устройств — Зарядное устройство для литий-ионных аккумуляторов своими руками (супер-экономно) (статья-обзор)
Статья-обзор
Зарядное устройство для литий-ионных аккумуляторов своими руками (супер-экономно)
Иногда бывает необходимо извлечь из какого-либо устройства съёмный литий-ионный аккумулятор и зарядить его. Для этого, разумеется, потребуется зарядное устройство.
В этой статье разберём, как сделать своими руками зарядное устройство для лития почти из ничего; ибо главная деталь устройства почти ничего не стоит.
Тем не менее, придётся кое-что докупить, т.е. собрать зарядное устройство полностью только из желудей и спичек не получится. Но затраты будут минимальными.
Секрет изготовления такого зарядного устройства сразу виден на следующей фотке, а теоретическое обоснование и схемные тонкости (они есть!) — далее в статье.
(кликнуть для увеличения, откроется в новом окне)
Зарядка лития своими руками на основе лампочки от карманного фонаря: теория и практика
Итак, интрига заключается в том, что центральным элементом устройства является лампочка от карманного фонаря.
Почему именно она?
Она в этом зарядном устройстве выполняет одновременно две функции: индикации и ограничения тока заряда.
А почему нельзя использовать, например, светодиод?
У него есть сразу два недостатка для подобной цели применения, связанных с тем, что по своей сути он — именно диод.
Во-первых, у него есть порог включения (от 1.3 до 3 В в зависимости от типа), ниже которого он ток почти не пропускает (т.е. зарядка прервётся раньше, чем аккумулятор будет полностью заряжен).
А во-вторых, после превышения порога включения ток начинает резко нарастать, что опасно уже для самого светодиода (может сгореть).
Другая альтернатива лампочке — обычный резистор. Всем он хорош, но только индикацию никак не заменит. 🙂
Ещё одно преимущество лампочки: из-за зависимости её сопротивления от степени нагрева нити, ток заряда, протекающий через лампочку, оказывается более стабильным при изменении напряжения на аккумуляторе, чем при применении резистора, или, тем более, светодиода.
Это свойство связано с тем, что при нагревании чистых металлов (не сплавов) с повышением температуры повышается и их сопротивление.
Посмотрите на вольт-амперную характеристику экземпляра лампочки, применённой в данном зарядном устройстве:
При увеличении напряжения от 1 В до 2 В ток увеличивается с 0.24 А до 0.33 А, т.е. не в 2 раза, а только в 1.375 раза.
Тем не менее, одной только лампочки не достаточно: должна быть ещё и плата защиты аккумулятора для предотвращения его перезаряда (он крайне вреден для литиевых аккумуляторов).
Использовать можно самую простую и недорогую плату защиты (обзор):
Плата стоит очень недорого, купить можно на Алиэкспресс, например, у этого продавца. Цена на дату выхода обзора — около $1 .
Тип лампочки зависит от того, какой ёмкости аккумуляторы мы собираемся заряжать. В данном случае зарядное устройство предназначено для небольших аккумуляторов формата 14500, максимальная реальная ёмкость которых составляет до 1200 мАч. В качестве оптимального варианта лампочки для “мягкой” зарядки можно использовать лампочку напряжением 2.5 В на ток 0.4 А. Для более ёмких аккумуляторов можно соединить несколько лампочек параллельно, либо применить более мощные лампочки (при применении галогенных лампочек потребуется позаботиться уже не только о более мощном источнике питания, чем телефонный адаптер, но и о теплоотводе).
Лампочку можно припаять к плате защиты с помощью жесткой проволочки:
Далее потребуются банальные, но тоже необходимые составные части. В качестве корпуса можно выбрать, например, сдвоенный держатель для аккумуляторов: на месте одного из аккумуляторов будет установлена плата защиты с лампочкой, а второе посадочное место будет использовано для собственно заряжаемого аккумулятора.
Вот пример такого корпуса (крышка снята):
Этот корпус — на самом деле держатель батареек формата AA, который подавал питание на автономную гирлянду светодиодов. Гирлянду я запитал от одного из многочисленных телефонных адаптеров, завалявшихся в домашнем хозяйстве; а держатель для батареек наконец-то нашел полезное применение.
Поскольку размеры литиевых аккумуляторов формата 14500 совпадают с размерами батареек АА, то никаких проблем с совместимостью по габаритам не может быть.
Несомненный плюс такого корпуса состоит в том, что он — полупрозрачный, так как это сделает видимым свечение лампочки, которое будет свидетельствовать о протекании процесса зарядки и его успешном завершении.
Выключатель с припаянной к нему контактной площадкой были извлечены из корпуса, а на освободившееся место уложена плата с лампочкой. Для подачи питания от телефонного адаптера использовался обрывок USB- кабеля, от которого была отрезана повреждённая часть с разъёмом микро- USB .
В результате после сборки и пайки получилась такая конструкция:
Теперь осталось закрыть конструкцию крышкой и провести контроль функционирования.
Благодаря частичной прозрачности крышки свечение лампочки получилось хорошо заметным:
Теперь — краткое описание, как работает индикация с помощью лампочки.
Лампочка включена последовательно между источником питания (телефонный адаптер 5 В) и заряжаемым аккумулятором.
Когда аккумулятор разряжен до нуля (это соответствует напряжению на литиевом аккумуляторе 3.2 В), то на лампочке падает напряжение 1.8 В. Лампочка светит хотя и не в полную силу (она рассчитана на 2.5 В), но довольно сильно и хорошо заметно.
Когда аккумулятор полностью заряжен, напряжение на нём составляет 4.2 В, а на лампочке остаётся 0.8 В. Лампочка светит тускло, едва заметно (но всё-таки заметно). На фотографиях в обзоре напряжение на лампочке составляет ровно 1 В.
Однако при дальнейшей зарядке аккумулятора, при повышении напряжения на нём свыше 4.2 В, срабатывает защита от перезаряда и аккумулятор отключается. В результате лампочка гаснет; аккумулятор можно извлекать.
Время заряда аккумулятора ёмкостью 900 мАч составило чуть более 3-х часов, что соответствует “мягкому” заряду, благоприятному для долголетия аккумулятора.
Окончательный диагноз
Несмотря на всю примитивность конструкции зарядного устройства для лития своими руками, устройство получилось полностью функциональным безо всяких скидок; и при этом — крайне недорогим.
У него — вполне выразительная индикация состояния процесса заряда (по яркости свечения лампочки); чётко определяется окончание зарядки (лампочка гаснет).
Но это — всего лишь один из возможных вариантов построения зарядки для лития на основе обычной лампочки. Подобным образом могут быть построены устройства и с более высоким зарядным током для более мощных аккумуляторов; разве нужно будет правильно подобрать лампочку, корпус и источник питания (для зарядки ёмких аккумуляторов может быть не достаточно питания от телефонного адаптера).
При грамотном построении зарядного устройства можно не беспокоиться о сроке жизни лампочки: при работе с недокалом (как в данном случае) срок жизни продлевается во много раз относительно номинального. В случае зарядки глубоко разряженного или короткозамкнутого аккумулятора напряжение на лампе может оказаться выше её номинала, что уже может быть для лампы вредным. Желательно избегать таких ситуаций.
Важное замечание. Если требуется собрать зарядное устройство для двух или более аккумуляторов, то плата защиты и лампочка должны быть отдельными для каждого из них!
Корпуса для таких зарядных устройств, если не найдутся в домашнем хозяйстве, тоже можно купить на китайских площадках; хотя выбор полупрозрачных корпусов крайне ограничен.
Например, корпус, аналогичный описанному в обзоре, есть на Алиэкспресс у этого продавца (цена с доставкой — чуть выше $1).
Полупрозрачный корпус на 3 аккумулятора формата 18650 — у этого продавца (цена с доставкой — около $4.5 , многовато будет).
Можно использовать и непрозрачный корпус для аккумуляторов 18650 (у этого продавца, $1.5 ); а в крышке можно сделать отверстие и заклеить его прозрачным пластиком (или не заклеивать).
Платы защиты есть, например, у этого продавца ( ч уть более $1 ).
Все цены приведены на момент составления обзора и могут меняться.
Весь раздел “Сделай сам! ( DIY) ” — здесь.
Ваш Доктор. 01 июня 2022 г.
Вступайте в группу SmartPuls.Ru Контакте! Анонсы статей и обзоров, актуальные события и мысли о них.
Самодельное зарядное устройство для литий ионных аккумуляторов
Литий-ионные аккумуляторы триумфально захватили рынок перезаряжаемых источников питания. При массе достоинств они имеют определенные минусы. Один из которых – усложненный алгоритм заряда. Но эта проблема решается даже самостоятельно.
Принципы зарядки литий-ионных аккумуляторов
В первую очередь стоит заметить, что полностью заряженный литиевый аккумулятор имеет номинальное напряжение холостого хода 3,7 вольт. При этом заряжать его надо до 4,2 вольта. Противоречия тут нет – заряжать надо на самом деле до указанного порога, а по окончании зарядки за счет саморазряда выходной уровень быстро (максимум – за несколько часов) упадет до 3,7 вольта. После процесс саморазряда резко замедлится, и АКБ будет стабильно держать свои 3,7 вольт.
В отличие от многих типов АКБ, аккумуляторы выполненные по Li-ion технологии в идеале должны заряжаться в два этапа:
- зарядка стабильным током (для его поддержания надо постоянно увеличивать напряжение);
- вторая стадия – дозарядка стабильным напряжением (ток при этом падает).
Профессиональные ЗУ работают по подобному алгоритму.
Классический график заряда литий-ионных батарей.
На этом и последующих графиках не указан предварительный этап, который применяется для глубоко разряженных элементов. Его смысл в том, что такой аккумулятор малым током дотягивается до минимального состояния, а дальше АКБ заряжается, как обычно.
На практике часто используется принцип дозаряда батареи импульсами тока постоянной амплитуды. При достижении определенного уровня напряжения на элементе (обычно 4,15 вольт) зарядник отключается. Напряжение холостого хода недозаряженной АКБ быстро спадает, ЗУ видит это и вновь подает импульс тока до достижения порога 4,15 вольт. С каждым импульсом батарея дозаряжается, и спад происходит все медленнее. Также следующий и дальнейшие импульсы тока будут все короче. За счет этого реализуется псевдостабилизация напряжения в определенных пределах. Плюс такого алгоритма в том, что перезаряд невозможен в принципе, и держать батарею в ЗУ можно сколь угодно долго – при саморазряде она будет периодически подзаряжаться. Зарядка импульсным током.
Еще один способ реализации второго этапа – зарядка ступенчатым током. На первый взгляд, этот алгоритм усложнен.
Зарядка ступенчатым током.
Но он может быть вырожден до одной ступени – просто снижается напряжение, подводимое к элементу. Зарядный ток остается стабильным, хотя его амплитуда уменьшается. Такой принцип имеет право на жизнь в недорогих зарядных устройствах. Вторая стадия имеет место, в отличие от совсем уж простых зарядников, в которых реализуется только первый этап. Хотя и в этом ничего плохого не происходит – просто емкость АКБ используется не полностью. К тому же в интернете гуляет распространенное, но ничем не подтвержденное утверждение, что заряжать литий-ионные элементы надо только до 90%. Доказательств этому никто не предоставил, верить или нет – личный выбор каждого.
Зарядка одноступенчатым током.
Что понадобиться для самодельного ЗУ
В первую очередь, потребуется выбрать схему зарядки для элементов 18650. Ее выбирают по необходимым параметрам, а также по доступности деталей. Во вторую очередь – навыки чтения схем, изготовления печатных плат в домашних условиях (или, хотя бы, заказа в Китае, что сейчас не так уж дорого), пайки микросхем и других элементов, поиска ошибок и неисправностей. Если этого нет, не стоит и читать, что понадобятся:
- радиоэлементы согласно схеме;
- паяльник с набором расходников;
- плата или заготовка для нее и аксессуары для самостоятельного изготовления.
Также потребуется кейс для установки аккумуляторов на зарядку (с ним удобнее подключить аккумулятор к ЗУ).
Пластиковый кейс для подключения АКБ 18650.
Навыки лучше наработать отдельно, а потом браться за изготовление этих устройств. Они не очень сложны, но требуют осознанного подхода.
Схемы контроллеров заряда
Зарядное устройство на LM317.
Несложное самодельное ЗУ можно собрать на широко распространенной и недорогой микросхеме LM317. В данном случае она включена по схеме стабилизатора напряжения, и АКБ заряжается падающим током. Такой алгоритм не позволяет полностью использовать возможности АКБ, и в этом состоит основной недостаток схемы. Другой недостаток – подавать на схему напряжение ниже 8 вольт нельзя. Поэтому запитать ЗУ от порта USB не выйдет.
Во время процесса контролируется ток в виде падения напряжения на резисторе R1. Как только оно уменьшится до определенного уровня, транзистор VT1 закрывается, и светодиод гаснет, сигнализируя об окончании зарядки. Процесс при этом не прекращается, поэтому следить за состоянием надо самостоятельно. Можно модернизировать схему, включив вместо светодиода реле, которое при выключении своими контактами размокнет силовую цепь.
Несколько сложнее зарядное устройство, позволяющее без всяких контроллеров реализовать алгоритм зарядки импульсным током.
Схема ЗУ с функцией импульсной дозарядки.
На первом этапе аккумулятор заряжается стабильным током, величину которого определяет напряжение питания и номинал резистора RD. Когда напряжение достигает порога 4,15 вольт, срабатывает компаратор и транзистор VT1 запирается. Напряжение на элементе скоро упадет до уровня ниже порога, и транзистор вновь откроется. Эта процедура будет продолжаться циклически, но, по мере заряда, паузы будут все дольше, а импульсы все короче. В итоге аккумулятор зарядится до напряжения 4,15 вольт, которое выставляется резистором R1.
Анализ схемы показывает, что ее можно легко упростить, не снижая функциональности. Так, вместо трансформатора со средней точкой и выпрямителя можно взять любой источник питания с напряжением 5 вольт (сильно увеличивать напряжение не надо, элементы силовой цепи будут греться, приближая тепловую смерть вселенной). Транзистор можно заменить на биполярный (подойдет и отечественный КТ827).
Упрощенная схема ЗУ.
Детектор напряжения можно заменить на KIA742, KIA719, KIA739. В итоге схема примет следующий вид.
Также можно использовать специализированные микросхемы, специально разработанные для создания подобных зарядных устройств. Одна из них — MCP73831.
Алгоритм зарядки, реализуемый на MCP73831 (на примере АКБ емкостью 180 мА*ч).
Она поддерживает правильный двухэтапный режим зарядки. Ток задается номиналом резистора, подключаемого между выводами 5 и 2. Единственный недостаток – наибольший ток, который можно снять с микросхемы – 500 мА. Этого не всегда достаточно, элементы большой емкости будут заряжаться долго.
Типовая схема включения MCP73831.
Также можно собрать зарядник на других специализированных микросхемах, специально разработанных для подобной цели. Помимо классической MAX1555, это могут быть:
- LP2951;
- LTC4054;
- TP4056;
- LTC1734;
- MCP73812;
- NCP1835;
- другие микросхемы.
У каждого элемента есть свои плюсы и минусы. Чтобы в них разобраться и сделать правильный выбор, надо читать даташиты.
В чем отличие контроллера заряда и схемы защиты
У некоторых пользователей периодически возникает вопрос, вынесенный в заголовок раздела – зачем нужен контроллер заряда, если есть схема защиты (индивидуальная или общая в виде платы балансировки). Дело в том, что эти устройства решают разные задачи:
- защитный модуль предохраняет элемент от перезаряда, не дает уйти в глубокий разряд, отключает батарею при превышении допустимой температуры;
- контроллер заряда формирует правильный режим пополнения энергии – стабилизирует ток на заданном уровне, осуществляет дозаряд по различным алгоритмам.
А путаница может возникнуть из-за того, что встречаются случаи, когда часть функций этих устройств дублируется. Так, защита от перегрева может быть встроена как в плату защиты, так и в контроллер заряда. А предохранять от перезаряда может как встроенная плата (отключая батарейку), так и зарядное устройство (завершая процесс пополнения энергии).
Общий принцип сборки для любого зарядного для 18650
В первую очередь надо изготовить плату. Ее можно разработать самостоятельно (в программах типа Sprint LayOut), можно найти готовую в интернете. Дальше два пути:
- Изготовить плату методом ЛУТ или по другой домашней технологии.
- Заказать плату в Китае.
Во втором варианте плата будет заведомо качественнее, но обойдется дороже, да и подождать придется не один день.
При сборке зарядки для аккумуляторов типоразмера 18650 на специализированных микросхемах, надо иметь в виду, что их корпуса зачастую сверхминиатюрны, и для пайки таких элементов нужны отдельные навыки.
Тест устройства
При первом включении надо измерить напряжение на выходе зарядника. Оно не должно превышать 4,2 вольта. Если в схеме есть орган регулировки, надо выставить выходной уровень на это значение. При первой зарядке крайне желательно проконтролировать ток. Он должен на каждом этапе вписываться в определенное для этой схемы значение.
Для наглядности видео.
Рекомендации по зарядке литиевых аккумуляторов 18650
В первую очередь, нельзя допускать глубокого разряда литий-ионных элементов. В большей степени это касается незащищенных аккумуляторов, но АКБ с платой защиты также радикально не ограждены от данной проблемы. Да, схема отключит элемент при достижении нижнего порога, но саморазряда она не отменит. Поэтому при хранении неиспользуемых АКБ лучше их периодически подзаряжать. Если глубокого разряда избежать не удалось, можно попробовать довести аккумулятор до напряжения 2,4 вольта малым зарядным током (0,1..0,2 от емкости). Если получится – дальше можно заряжать обычным способом, если нет – элемент придется утилизировать.
Также надо внимательно относиться к вопросам перезарядки. Элементы с маркировкой Protected отключатся при достижении верхнего лимита, а вот банки без платы защиты будут заряжаться дальше. И погасание светодиода ЗУ проблему не снимает – в большинстве случаев это всего лишь индикация достижения номинального напряжения, а отключения зарядника не происходит. Учитывая пожароопасность литий-ионных аккумуляторов и проблемы с их тушением, надо самостоятельно следить за окончанием процесса и вовремя выключать зарядник из сети.
Самодельные зарядные устройства для литий-ионных батарей работают ничуть не хуже промышленных. Но только если собраны и настроены грамотным пользователем, понимающим процессы, происходящие во время пополнения энергии.
Реинкарнация «народной» платы TP4056 или самодельная зарядка для лития на 3А
Всех приветствую, кто заглянул на огонек. Речь в обзоре пойдет, как вы наверно уже догадались, об одной интересной модификации «народного» зарядного модуля TP4056 на ток 3А и небольшом применении в качестве самодельной зарядки для лития. Будет небольшое тестирование и простенький пример изготовления зарядки из дешевых компонентов, поэтому, кому интересно, милости прошу под кат.
Итак, вот та самая модификация «народной» платки:
Применение данной платы:
- Зарядка Li-Ion аккумуляторов, встроенных в конечное устройство. Частый случай – в устройстве несколько запараллеленных банок и 1А слишком мало. Ну, сами посудите, есть две-три банки по 2,6-3Ач, общая емкость около 6-7Ач. Заряд такой батареи займет около 7-8 часов, а с данной платкой – около 3 часов. Как пример – самодельные ПБ, аккумуляторные отвертки и минишуруповерты
- Сборка своего «быстрого» зарядника на один или два аккумулятора. Современные высокоемкие аккумуляторы на 3300-3500mah спокойно могут принимать 3-4А, а уж две запараллеленные банки тем более (перед зарядом лучше приблизительно уравнять потенциалы). Сами производители допускают заряд некоторых банок током 3-4А, об этом написано в даташитах на эти банки.
- Входной разъем – DC Port 5мм + дублирующие выводы;
- Входное напряжение — 4,5V-5,5V
- Конечное напряжение заряда — 4,2V (Li-Ion аккумуляторы);
- Максимальный зарядный ток — 3А;
- Количество модулей TP4056 — 4 (макс. разгонный ток 4А);
- Индикация – дискретный двухцветный светодиод (красный/зеленый);
- Защита от переполюсовки — нет;
- Размеры — 65мм*15мм.
- Плата заряда 4*TP4056 на 3А;
- Двухцветный трехногий светодиод (красный/синий свет);
- DC разъем 5мм.
Поставляется платка в обычном мелком пакете, до меня доехала за две-три недели. Внутри пакета была своеобразная защита – два склеенных листа пенополиэтилена, внутри которых и была платка:
Плата зарядки крупным планом:
По схемотехнике ничего сверхъестественного – просто взяли и запараллелили 4 контроллера TP4056, одновременно уменьшив максимальный зарядный ток для каждого контроллера с 1А до 750ma. Поначалу я не мог понять, почему максимальный зарядный ток всего 3А, ведь контроллеров то четыре, но приглядевшись, увидел не привычный 1,2Ком SMD резистор, а 1,6Ком. Причем во всех плечах стоит резистор 1,6Ком:
Напомню таблицу максимального зарядного тока в зависимости от номинала токозадающего резистора:
В нашем случае стоят резисторы по 1,6Ком для каждого контроллера, по 750ma на плечо. Следовательно, общий максимальный зарядный ток – 3А. Оно и к лучшему, меньше греется платка, да и 4А уже многовато. С другой стороны, если нужен зарядный ток 4А – меняем 4 резистора.
Регулировать общий зарядный ток подпайкой подстроечного/переменного резистора, скорее всего, не получится, ибо нужно задавать для каждого контроллера.
Итого, кому сложно или не хочет сам спаивать народные платки — неплохое решение проблемы.
Размеры платки:
Платка совсем небольшая, всего 65мм*15мм:
Вот сравнение с «народной» платой TP4056 на 1А, 18650 аккумулятором и холдером:
При необходимости можно откусить переднюю часть платы, на которую впаивается DC разъем и припаяться к контактам 5V+ или 5V-, либо напрямую к соответствующим дорожкам:
Так длина платки станет на 1 сантиметр короче. Ранее я уже переделывал народную платку, вот что получилось:
В нашем случае все просто до невозможности, ибо дорожки на печатной плате не страдают. Разумеется, кому необходим DC разъем – оставляем, либо подпаиваем его через провода к контактам 5V+ или 5V-. Разъемы microUSB и miniUSB здесь нежелательны, будут сильно греться, ибо не рассчитаны на такие токи. Да и незачем они, ибо в большинстве адаптерах стоит ограничение на 2,5А. Но с другой стороны, если адаптер не отключается при перегрузке, то мы экономим на дискретном блоке питания, ну и ток будет чуть меньше. Поэтому, решать вам…
Тестирование платки 4*TP4056 3A:
Теперь протестируем платку. Действительно ли она заряжает 3А? Для этого нам поможет ампервольтметр, который частенько мелькает в моих обзорах (замер тока заряда) и привычный мультиметр (замер напряжения на аккумуляторе). В качестве источника питания – импульсный БП S-30-5 на 5V/6A:
Как видим, заряд действительно идет постоянным током 3А (фаза СС), пока напряжение на банке не превысит 3,9V-3,95V, затем начинает плавно снижаться (начинается фаза CV). Как только напряжение на банке равняется 4,2V, цвет светодиода меняется на зеленый, означая, что заряд окончен. Хотя из-за инерционности ток продолжает еще течь:
После этого еще 10-15 минут ток снижается, при этом напряжение на аккуме 4,21V. Как только ток снизится до 150ма, контроллер полностью отключает заряд, напряжение на банке скидывается до 4,2V.
Практически «выжатую» банку Sanyo UR18650ZY 2600mah модуль зарядил за 75-80 минут. Ну что же, просто великолепно!
Небольшой пример сборки своего зарядника на 3А:
В качестве примера приведу пример постройки своего зарядного устройства из проверенных недорогих компонентов. Что нам для этого понадобится:
1)Непосредственно сама обозреваемая плата TP4056*:
Вот такие холдеры ни в коем случае не применяйте, 3А для них много:
Можно попробовать переделать дрянную зарядку, выпаяв все кишки:
Я рекомендую первый вариант, т.к. они с легкостью выдерживают 3А, ибо контакты на порядок лучше, да и имеют паз для провода.
3)Любой подходящий разъем: DC port* (поставляется в комплекте с платой), USB (не очень желательно), Molex* (при питании от компьютера), силовые модельные или автомобильные разъемы (какие найдутся под рукой):
В крайнем случае, можно вывести просто два провода и гонять все хозяйство на скрутке, как в моем случае, :-).
Нужен именно медный, а не омедненный. Определить легко – зачищаем ножом и если жилки начинают блестеть и не лудятся, значит, провод омедненный (алюминий покрытый медью). Рекомендую либо качественный акустический, либо бытовые, типа ШВВП.
5) Блок питания (БП) на 5V на 5-6A (с запасом). Я использовал БП S-30-5 на 5V/6A*:
Можно применить часто встречающийся БП на 12V на 2-3A, которые идут в комплекте к различным устройствам и понижающий DC-DC преобразователь на 5А (3А они стабильно держат). Но здесь есть пара минусов, ибо усложняется схема и повышается себестоимость зарядника. Поэтому, если нет в наличии подходящего БП, то используем БП компьютера. Дополнительная нагрузка в 15Вт ему не страшна, если, конечно, он и так не работает на пределе своих возможностей. Если есть в наличии свободный Molex разъем, то подцепить к нему переходник не составит труда. В таком случае нам нужны красный (+) и черный (-) провода.
Итак, с компонентами разобрались. Теперь непосредственно сборка:
Поскольку платка будет использоваться в другом устройстве и у меня уже есть хорошие высокотоковые зарядники, то самодельная зарядка мне не нужна, поэтому сборка, как говорится, на коленке (подпаивать разъемы я не буду):
Берем холдер для аккумулятора и вырезаем пластик на торцах для провода (на фото нижний паз):
Далее подпаиваемся с правой стороны к плюсовому контакту и укладываем провод в пазу:
Далее припаиваем минусовой выход платы (В-) к другому, минусовому выводу холдера, а проведенный в пазу провод – к плюсовому выходу платы (В+):
Потом припаиваем питающие провода с разъемами или без них, в зависимости от того, какой вариант вы выбрали. Трехногий светодиод изгибаем по своему усмотрению, но чтобы не коротнуть его выводы – натягиваем на них изоляцию от любого провода:
Закрываем плату пластиковой крышкой от кабель-канала или аналогичным кожухом и заматываем всеми известной изолентой, :-). Получается довольно кустарно, но главное работает:
Контрольная проверка, все работает:
Я не стал припаивать разъемы, а подключил напрямую к БП. Я же рекомендую припаять соответствующий разъем, который выдержит длительное протекание тока 3А. На этом у меня все…
- Надежная, проверенная годами элементная база;
- Высокий ток заряда;
- Возможность увеличения зарядного тока до 4А путем замены токозадающих резисторов;
- Небольшой размер;
- Простота монтажа и эксплуатации.
- Цена великовата;
- Платка не предназначена для зарядки последовательных сборок (2S, 3S, 4S и более не умеет);
- Требуется внешнее питание;
- Боится переполюсовки;
- Некоторая заторможенность последней фазы заряда (CV).
Вывод: полезная модификация народной платки TP4056* на большой зарядный ток, брать можно!
10 простых схем зарядок литий-ионных аккумуляторов и как правильно заряжать
Название аккумулятора 18650 обусловлено его формой и габаритами. Ширина батареи составляет 18 мм, а длина – 65 мм. Последняя цифра в маркировке означает цилиндрическую форму АКБ. Схема накопителя снабжена контроллером, который предотвращает перегревание в процессе подзарядки.
Корпус аккумулятора может маркироваться и более подробно: например, INR18650-20R. Первая буква отличает все АКБ литиевого типа, вторая уточняет вид материала катода (C – кобальт, N – марганец, F – феррофосфат).
Буква «R» расшифровывается как rechargeable («перезаряжаемый источник»). Следующие 5 цифр отражают габариты и фактор формы батареи, а последняя – емкость АКБ в А/ч.
Аккумуляторы 18650 с платой защиты могут маркироваться как 18700 или 18670. Контроллер защитной платы позволяет предупредить превышение номинального вольтажа батареи (4,2 В) и его снижение более чем до 2,5 В.
Схема светодиодов для контроля разряда литиевых аккумуляторов
Актуально узнать, когда аккумулятор сядет. Разряжать литиевые батареи до 2,5 В не стоит, будут трудности с предзарядом. Резкое мигание светодиода послужит заметным аварийным сигналом.
Несложная схема с применением монитора напряжения еще и компактная. Неоспоримое достоинство – низкое потребление энергии. При севшей батарее это важно. Хорошо с задачей справится мигающий светодиод L-314.
Можно купить готовый прибор –MAX9030. Схема компоновки представлена. При понижении напряжения до 3,0 В начинает вспыхивать ярко светодиод с длинным интервалом. В спящем режиме расходуется 50 наноампер (10-9), при вспышках 35 мкА.
Как сделать зарядку для литий-ионных аккумуляторов самостоятельно
Наиболее простым вариантом считается использование зарядного устройства от мобильного телефона. Приборы выдают напряжение, подходящее для восстановления мощности аккумуляторов 18650. Способ используется только в экстренных случаях. Частое его применение приводит к снижению емкости АКБ.
Самодельная зарядка для литий-ионного 18650-го аккумулятора, сделанная из старого зарядного устройства от телефона.
Чтобы зарядить батарейку, выполняют такие действия:
- Штекер зарядного устройства срезают. Провода освобождают от изоляции и делят на положительный и отрицательный полюса. Плюсовой кабель чаще всего имеет оплетку красного цвета, минусовой – черного.
- Очищенные провода прикрепляют к полюсам батареи пластилином. USB-кабель подсоединяют к разъему компьютера или специального адаптера.
- Источник питания заряжают, периодически отслеживая процесс. Заряжать батарейку рекомендуется не более часа. Этого времени достаточно для полного восстановления емкости.
Для сборки усовершенствованной зарядки используют сложные схемы. Перед началом работы подготавливают паяльник, припой, флюс и клей. Отдельно приобретают плату, необходимую для нормального функционирования самодельного ЗУ.
Сборку осуществляют так:
- Плату устанавливают в подготовленный заранее пластиковый бокс. Конструкцию снабжают плюсовым и минусовым проводами. Бокс используется для размещения батареи во время зарядки. Сделать емкость можно из старого ЗУ, непригодного к эксплуатации бытового прибора или игрушки. Размеры должны соответствовать параметрам аккумулятора.
- Плату припаивают, учитывая маркировку. Обозначения позволяют без труда разместить провода. Плата снабжена разноцветными индикаторами, отражающими ход зарядки. Микросхему приклеивают к боксу в удобном месте. После этого, соблюдая полярность, подключают провода. Перед фиксацией их очищают от изоляции и обрабатывают канифолью. На плату наносят небольшое количество жидкого припоя.
При изготовлении устройства нельзя допускать короткого замыкания. Приведенная выше схема позволяет собрать простое, но надежное ЗУ за несколько часов. С помощью USB-кабеля его подсоединяют к электросети или компьютеру. Батарею устанавливают в получившееся гнездо. После включения зеленого индикатора прибор отключают.
Как выбрать аккумулятор
Отдельное внимание нужно уделить производителям аккумуляторов. Существуют зарекомендовавшие себя бренды и какие-то неизвестные аналоги. Иногда недобросовестные производители могут продавать товар, который ниже заявленных характеристик в 3 раза и более.
Обратите внимание! К брендам, получившим популярность, можно отнести Panasonic, Sony, Sanyo, Samsung.
Покупка литиевых аккумуляторов не должна вызвать больших проблем. Купить их можно в местных магазинах электроники, в интернет-магазинах или заказать напрямую из Китая. Не стоит гнаться за дешевизной. Хороший аккумулятор не может стоить очень дёшево. Некоторые производители ставят качественные банки, но плохие платы, отвечающие за питание. Это неминуемо приведет к гибели батареи.
Какое устройство следует использовать
Разные модели зарядных устройств отличаются техническими характеристиками, набором функций и некоторыми другими параметрами:
Liitokala Lii-500 – универсальная зарядка, которая сама подбирает токи для .
- Простые. Такие приборы подают ток силой 1 А. Они имеют единственное гнездо для установки АКБ 18650.
- Усовершенствованные. Прибор снабжен 2 гнездами для батареек. Максимальный уровень напряжения составляет 4,2 В. Такое зарядное средство отличается более высокой стоимостью. К дополнительным функциям относится индикация заряда. Прибор самостоятельно ограничивает время процедуры, предотвращая перезаряд.
- Универсальные. Используются для зарядки источников питания типа 18650 и 26650. Модели такого типа используются для восстановления работоспособности литий-ионных и никель-кадмиевых элементов. Лучшие устройства оснащены системой безопасности, избавляющей от регулярного измерения напряжения и силы тока.
- Самодельные. Если готовый прибор найти невозможно, зарядное устройство можно собрать в домашних условиях. Компоненты соединяют согласно схемам.
Самая простая схема
Сегодня рассмотрим варианты UDB-зарядного устройства для литиевых аккумуляторов, которое сможет повторить каждый. Схема самая самая простая, которую можно только придумать.
Это гибридная схема, где есть стабилизация напряжения и ограничение тока заряда аккумулятора.
Немного о литий-ионных батареях
Особенности АКБ типа 18650:
- Длительный срок службы. Источник питания способен выдерживать до 600 циклов разряда и заряда. Литиевые батареи обладают увеличенным сроком эксплуатации, они могут длительно сохранять емкость.
- Компактные размеры. Высота элемента составляет 65 мм, диаметр – 18 мм. Эти числа легли в основу названия аккумулятора. При небольших размерах батарея имеет широкие возможности.
- Наличие контроллера. Большая часть аккумуляторов старого образца отличается высокой взрывоопасностью. В корпусе батареи протекают химические реакции, скорость которых при перегреве многократно увеличивается. Возникало и механическое замыкание нескольких содержащих электролит емкостей, приводившее к возгоранию. Контроллер, встраиваемый в современные источники питания, препятствует сильному перегреву и взрыву. Это же от перезаряда.
- Невозможность длительного хранения. Долго находившиеся в нерабочем состоянии батарейки быстро утрачивают емкость. Заряжать li-ion аккумулятор нужно регулярно. При этом соблюдают ряд правил, препятствующих выходу изделия из строя. Нужно правильно рассчитывать ток заряда и ограничивать напряжение. Нарушение правил приводит к снижению срока службы.
Особенности литиевых батарей
Li-ion АКБ являются очень неприхотливыми в эксплуатации. При бережном обращении они прослужат около 3-4 лет. Однако стоит ориентироваться на то, что даже если аккумуляторы не используются, они медленно умирают. Поэтому запасаться аккумуляторами к устройству впрок не совсем резонно. 2 года – это нормальное время от момента производства. Если прошло больше, то это могут быть уже вышедшие из строя батареи.
Интересно. Самый распространенный размер банки 18650 в среднем имеет ёмкость в 3500 мАч. Нормальная цена для такой батареи – 3-4 доллара. Поэтому производители, обещающие за 3 доллара Power bank объемом 10000 мАч, мягко говоря, обманывают. Хорошо, если там будет хотя бы 3000 мАч.
Какое устройство следует использовать
Для подзарядки АКБ 18650 нужно использовать устройства с номинальным напряжением 4,2 В. Если литий-ионный накопитель планируется подключать к универсальному ЗУ, то оно должно быть оборудовано контроллером параметров и индикаторами окончания процесса.
Наиболее дешевые модели имеют 1-2 гнезда для батарей, максимальный ампераж до 1 А и номинальный вольтаж 4,2 В. Лучший вариант ЗУ для литиевых накопителей – интеллектуальное устройство, оборудованное измерителем напряжения на клеммах, функцией восстановления после глубокого разряда и защитой от превышения номинального вольтажа.
Для каких аккумуляторов подходит устройство?
Схема предназначена для зарядки только одной банки литиевого аккумулятора. Можно заряжать акб стандарта 18 650 и иные аккумуляторы, только нужно выставить соответствующее напряжения на выходе из зарядника. Если вдруг по каким-то причинам схема не заработает, то проверьте наличие напряжения на управляющем выводе микросхемы. Оно должна быть не менее 2,5 Вольт. Это минимальное рабочее напряжение для внешнего источника опорного напряжения микросхемы. Хотя встречаются варианты исполнения, где минимальное рабочее напряжение составляет 3 Вольта. Целесообразно также построить небольшой тестовый стенд для указанной микросхемы, чтобы проверить ее на работоспособность перед пайкой. А после сборки тщательно проверяем монтаж.
В ещё одной публикации материал об улучшении зарядки для шуруповертов.
Как заряжать АКБ 18650
Многие зарядные устройства (ЗУ) универсальны, однако при зарядке литий-ионных аккумуляторов нужно соблюдать такие правила:
0,5-1 А – оптимальный ток заряда для 18650-х аккумуляторных батарей.
- На раннем этапе необходимо подавать не более 0,05 В. Заканчивают процедуру, повышая параметр до 4,2 В. Это значение является допустимым безопасным уровнем для батарей 18650.
- Ток заряда должен составлять 0,5-1 А. При большем значении заряд будет набираться быстрее. Однако подавать силу тока в 1 А сразу не рекомендуется. Показатель должен повышаться плавно.
- Ускоренные способы зарядки нужно применять только в экстренных случаях. Время процедуры не должно превышать 3 часов. Перезаряд приводит к повреждению компонентов АКБ, вызывая перегрев.
- Рекомендуется использовать устройства, автоматически контролирующие ход зарядки. Они самостоятельно отключаются после набора батареей требуемой мощности. Дешевые и самодельные приборы не оснащаются контроллерами, поэтому пользователю придется самостоятельно отслеживать ход процедуры.
Опасность перезаряда и полного разряда
Исходя из устройства литиевых батарей, не рекомендуется допускать их полной разрядки или перезарядки.
К примеру, никель-кадмиевые батареи имеют эффект памяти. Это значит, что неправильный режим зарядки приводит к потере ёмкости. Неправильным считается режим, когда подзаряжается батарея, которая не полностью разрядилась. Если начать заряжать ее в не полностью разряженном состоянии, она может терять свою ёмкость. Зарядные устройства для таких батарей производятся со специальными режимами работы, которые сначала разряжают батарею до нужного уровня, потом начинают ее подзаряжать.
Литиевые батареи не требуют такого хлопотного обслуживания. Эффекта памяти у них нет, но они боятся полной разрядки. Поэтому их лучше подзарядить, когда появляется возможность, не дожидаясь полного разряда. Но и перезаряд для них неприемлем. Поэтому оптимальным будет не допускать разряда ниже 15 % и заряда более 90%. Так можно увеличить срок службы батареи.
Это касается только батарей без защиты. Если у аккумуляторов есть защита, реализованная на отдельной плате, то она отсекает заряд сверх меры, если разряд достигает минимального уровня, то отключает устройство. Обычно это показатели более 4,2 Вольта и 2.7 Вольта, соответственно.
Полезные рекомендации при эксплуатации аккумуляторов 18650
Чтобы сохранить емкость АКБ и продлить срок их эксплуатации, нужно следовать нескольким советам:
- правильно выбирать режим работы ЗУ, при отсутствии контроллера регулировать параметры автоматически;
- избегать глубокого разряда, подключать аккумулятор при снижении заряда до 70-80%;
- при расчете длительности восстановления учитывать не только количество ампер-часов, но и разницу вольтажа при зарядке в заводских и домашних условиях, которая влияет на ваттную емкость;
- не пытаться увеличить емкость АКБ циклами разряд-заряд;
- не допускать перегрева накопителя, не оставлять его под прямыми солнечными лучами;
- эксплуатировать батарею при температуре +10…+25°С, для использования при низких температурах утеплить корпус;
- не допускать ударов по телу АКБ, воздействия сильного трения и вибрации, при транспортировке укладывать аккумуляторы на толстую мягкую подложку;
- хранить литий-ионные накопители с 50-60% заряда и при температуре около 0°С.
При покупке аккумулятора нужно обращать внимание на дату выпуска. Батареи, произведенные более 3 лет назад, считаются просроченными и малофункциональными
Сборка зарядника
В подготовленной пластиковой коробке нужно выполнить отверстия для всех электрокомпонентов, включая USB-разъем, диоды модуля TP4056, разъем питания и выключатель. После этого нужно установить и приклеить электрокомпоненты:
- батарейный отсек;
- модуль TP4056, обеспечив попадание USB разъема и диодов в организованные для них отверстия;
- стабилизатор напряжения 7805, разъем питания и выключатель.
После этого нужно завинтить нижнюю крышку, а неровные кромки зашкурить наждачной бумагой.
Как заряжать АКБ 18650
При зарядке АКБ 18650 необходимо соблюдать следующие правила:
- Начинать восстановление нужно при напряжении 0,05 В, постепенно повышая его до 4,2 В.
- Диапазон допустимого тока заряда – 25-50% от емкости (например, для АКБ на 2000 мА/ч он варьируется от 0,5 до 1 А).
- Оптимальный показатель составляет 25-30% емкости, максимальный ампераж используется только при срочной подзарядке.
- Допустимое время зарядки при полном разряде аккумулятора – 3 часа.
- Для точного выбора длительности восстановления нужно измерить его вольтаж мультиметром или подключить к интеллектуальному зарядному устройству (ЗУ).
Оптимальный режим состоит из двух этапов:
- CC (constant current). На нем нужно обеспечить постоянный ампераж, который находится в пределах 20-50% емкости аккумулятора. При ускоренном заряде может использоваться и большее значение тока, но часто применять такой режим не рекомендуется. Зарядное устройство должно быть оборудовано функцией плавного подъема вольтажа. На первом этапе зарядник работает как стабилизатор силы тока.
- CV (constant voltage). При подъеме напряжения до 4,2 В можно переходить ко второму этапу подзарядки, на котором поддерживается вольтаж 4,15-4,25 В. К концу первого этапа АКБ восстанавливается на 70-80%. По мере накопления заряда до 90-95% ампераж будет плавно снижаться. Как только его значение достигнет 1-5% емкости, батарею можно отключать от ЗУ.
Некоторые модели «зарядок» оборудованы режимом восстановления АКБ при глубоком разряде (менее 2,5 В). На нем батарея заряжается низким током (не более 5-10% емкости) до тех пор, пока ее вольтаж не достигнет 2,8 В. После этого ЗУ переходит в режим постоянного тока.
Самодельное зарядное устройство li-ion аккумуляторов на базе МК ATMega328
Анализируется возможность построения схемы зарядки литий-ионных аккумуляторов на базе МК ATMega328 и популярного программного обеспечения ARDUINO версии 1.8.5. В интернете, в свободном доступе, размещена статья Рыкованова А., Беляева С. «Зарядные устройства для портативных литий-ионных аккумуляторных батарей», где рассмотрена методология построения зарядных устройств, без рассмотрения принципиальных схем. В данной статье сделана попытка разработки и изготовления одной из множества вероятных схем на основе радиолюбительской технологии «Сделай сам».
За основу взяты два графика, размещённых в плоскости Рис.3, заряда одиночного литий-ионного аккумулятора приводимого в указанной статье. График I – интерпретирует ток заряда аккумулятора, график U – напряжение на аккумуляторе.
Рис.1. График АКБ
Первоначальный заряд малым током (этап 1’) используется для обеспечения безопасности аккумулятора (АК) при заряде. Если внутри АК произошло короткое замыкание (КЗ), то по истечении некоторого времени заряда напряжение на нем не будет возрастать. Этот факт может свидетельствовать о неисправности. Если начать заряд достаточно большим током сразу, то при КЗ может произойти сильный разогрев аккумулятора и его разгерметизация. Необходимо отметить, что данный этап часто исключают из цикла заряда батареи, начиная заряд сразу с этапа1.
На этапе 1 заряд осуществляется номинальным током, который измеряется в долях от номинальной емкости (Сh) АК. Например, емкость АК 1000мАч, ток заряда 0,1Сн, то есть 100 мА обеспечивается 10-и часовым режимом заряда. Чтобы заряд осуществлялся быстрее, например в течение 2 ч, что соответствует 0,5 Сн (500мА). Такой режим заряда называеся ускоренным. Для нормальной работы АК номинальный ток заряда лежит в пределах от 0,1 СН (100мА) до 2,8 Сн,т.е. 280 мА. Т.е. на этапе 1’ и 1 зарядное устройство (ЗУ) работает как стабилизатор тока, при этом напряжение на АК линейно возрастает.
На этапе 2 поддерживается постоянное напряжение близкое к напряжению полного заряда, при этом ток снижается по экспоненте практически до нуля. Привязываем указанные этапы к Li-ion аккумуляторам с номинальным напряжением в 3,7 В, см.рис.2:
Рис.2. Li-ion аккумуляторы.
Этап 1’ – напряжение на АК <2,5 В ток заряда 50 мА до 3 В</p>
Этап 1 – напряжение на АК 4В > АК > 3 В ток заряда 100 мА
Этап 2 – напряжение на АК 4,2В => АК > 3 В ток в пределах 150-200 мА.
На всех этапах, напряжение подаваемое на АК постоянное, порядка 8В, через ограничивающий 2-х ваттный резистор R21 в 20 Ом. При достижении напряжения на АК 4,2 В, напряжение обнуляется путём подачи нулевого кода в порт D, см.Рис.4.
На Рис.3 представлена структурная схема ЗУ. Цифроаналоговый преобразователь (ЦАП) фиксирует код от микроконтроллера (МК) в виде аналогового напряжения от 0 до 8 вольт с дискретностью 8/255=
30 мВ и через гасящий резистор R подаётся напряжение на АК. Ток контролируется и регулируется через измерение падения напряжения на R (АЦП2-АЦП1)/R. Напряжение на АК контролируется АЦП2.
Рис.3. Структурная схема ЗУ.
Рис.4. Принципиальная схема ЗУ.
Для управления ЗУ был выбран ATMega328 в виду относительной лёгкости написания и отладки программы на языке Arduino. ATMega328 имеет встроенный загрузчик, что позволяет комфортно производить отладку на персональном компьютере в среде Windows7 с использованием виртуального COM-порта. Порт D МК полностью задействован на управление 8-и разрядным параллельным ЦАП состоящим из 16-ти SMD-резисторов (R1÷R16) по 22 и 11 кОм соответственно. МК работает на частоте 16 мГц что обеспечивается кварцевым резонатором и соответствующей прошивкой фьюзов МК.
Для контроля и измерения напряжения и тока на АК служат два аналоговых канала А0 и А1. Непрерывно измеряемая информация поступает в МК для обработки и выдаётся на OLED-дисплей, управляемый по протоколу программной шины I2C сигналами SDA и SCK. Вывод информации на OLED производится на основе библиотеки iarduino_OLED_txt.h, см.Приложение1. Для выдачи звуковых сигналов служит мини-динамик управляемый каналом МК PB2. Для формирования звука использовалась функция языка Arduino tone(), см. на сайте arduino «Программирование Ардуино».
Напряжение ЦАП формируется кодом D0÷D7 и не может превышать на выходе цепи R-2R 5-и вольт. ( R1÷R18, операционный усилитель (ОУ) MCP602 вход 3,выход 1, см.рис.4). Для создания эффективного тока для ЗУ на всех этапах требуется напряжение превышающее 5 В. Имеющийся в наличии ОУ MCP602 имеет следующие характеристики:
- Рабочее напряжение питания от 2,7В до 5,5В
- Амплитуда выходного сигнала до напряжения питания
- Допускается входной сигнал с амплитудой ниже нуля
- Полоса частот до 2,8МГц
- Низкое энергопотребление Idd=325мкА
- Рабочий температурный диапазон от -40 до +85гр.С
- Два операционных усилителя в одном корпусе
Прекрасная микросхема, но на нет сводит всю работу. Нужен усилитель до 10 вольт. Что я теряю, если запитаю её на 10 вольт? Максимум она сгорит, а мне придётся искать однополярное ОУ на 10 вольт. Сказано, сделано. После того, как ЗУ надёжно проработало с данным ОУ целый месяц, стало понятно что рабочее напряжение микросхемы занижено. Повышение питания не сказалось на линейности выдаваемого напряжения на усилитель мощности на Т1 и Т2.
Cхема усилителя на MCP602 представлена 2-мя каскадами. Первый каскад неинвертирующий усилитель, ножки 1,2,3 с коэффициентом усиления равным (R17+R18)/R17=3.(См. В.С.Гутников «Применение операционных усилителей в измерительной технике», стр.29).
Второй каскад, ножки 5,6,7 – прецезионный повторитель с относительно мощным выходом способным работать на повторитель на транзисторах Т1, Т2 не загружая предварительный усилитель.
Силовая часть ЗУ состоящая из Т1, Т2, D1, R21 через разъёмы типа «мама/папа» формирует напряжение на АК. Напряжение на АК в точке А1 контролируется АЦП(А1) МК, канал PC1/ADC1, контакт 24 МК. Для измерения тока служит цепочка из R19 и R20, по 22кОм и 11кОм соответственно. Используя закон Ома для участка цепи:
- Измеряется напряжение в точке соединения R19 и R20 АЦП(А0), канал PC0/ADC0, контакт 23 МК.
- Вычисляется ток на участке цепи R20 как АЦП(А0)/R20.
- Вычисляется напряжение в узле цепи D1 и R21 как (АЦП(А0)/R20)*( R19 + R20).
- Вычисляется ток подаваемый в АК как ((АЦП(А0)/R20)*( R19 + R20))/R21.
Почему так вычисляется ток на АК? Это связано с тем что 5-и вольтовое АЦП МК не сможет измерять напряжение свыше 5-и вольт. Поэтому стоит делитель R19 и R20 на канале А0. АЦП меряет часть напряжения и программа путём расчётов вычисляет требуемые значения тока и напряжения. Узел питания для МК и OLED выполнен на регулируемом стабилитроне ТL431, транзисторе КТ815Б и потенциометре R24 на 10 кОм. На Рис.5 ЗУ в стадиях разработки и испытаний.
Рис.5. Настройка ЗУ.
Левая часть рис.5 – отладка и испытания макета с использованием отладочного комплекса Arduino Uno с выводом результатов испытаний на дисплей ПК, справа — наработка на надёжность готового ЗУ с выводом результатов испытаний на дисплей OLED, рис.6.
Рис.6. Внешний вид платы ЗУ.
Укрупнённое фото ЗУ в момент зарядки АК. Зарядка идёт через разъём OUT помеченного белой изолентой. OLED-дисплей фиксирует момент зарядки 2-го этапа, т.е. когда напряжение на АК равно 4,153В, что меньше 4,2В и больше 4В. При этом порт D выдаёт максимальный код равный 255 и ток зарядки равный 194 мА. При этом резистор зелёного цвета в 20 Ом гасит избыточное напряжение для АК. При окончании зарядки, т.е. когда напряжение на АК превысит 4,2 В, программа формирует малый ток (поддержка 4.2 В), при этом динамик выдаёт октаву октаву звукового ряда до,ре,ми, фа,соля,си и т.д. до отсоединения АК от ЗУ.
Рис.7. Обратная сторона готовой платы ЗУ.
17-06-20.ino – скетч (программа) под Arduino 17-06-20.ino.standard.hex – прошивка скетча для программирования флэш-памяти МК любым программатором для МК фирмы Atmel. 17-06-20.ino.with_bootloader.standard.hex – загрузчик, при использовании Arduino Uno (Nano) встроен в память МК и через COM-порт загружает скетч пользователя
Инструменты при разработке ЗУ:
- Сервисное ПО для разработки и отладки, Arduino версия 1.8.5.
- sPlain 7.0, графический редактор – вычерчивание принципиальной схемы.
- Sprint Layout 6.0 — вычерчивание печатной платы (ПП) и экспорт ПП в предварительные текстовые форматы фрезеровки и сверловки для фрезерного станка.
- CNC_Converter_v1.72.exe — конвертер экспорта ПП в текстовые форматы для фрезерного станка.
- Указанные программы находятся в свободном доступе в Интернете.
- Фрезерный станок СНС-3 Луганского завода малого машиностроения – изготовление ПП.
Выводы:
- ЗУ уверенно распознаёт диапазон в котором оно будет работать, с выдачей и контролем тока и напряжения для данного диапазона.
- Если диапазон этапа 1’, ЗУ с задержкой в 1 сек каждого кода порта D, наращивает ток до 50 мА и заряжает АКБ данным током до 3В, т.е. в первую секунду формируется код 01, во вторую секунду 02 и т.д., контролируя ток до 50мА, после чего наращивание тока прекращается. По мере зарядки АК напряжение на нём растёт и ток падает ниже 50мА, ЗУ распознаёт уменьшение и наращивает ток до 50мА и т.д. до 3-х вольт.
- Переходя в диапазон этапа 1, ЗУ наращивает ток до 100 мА и заряжает АК данным током до 4В.
- Переходя в диапазон этапа 2, ЗУ наращивает ток до 150÷200 мА и заряжает АК данным током до 4,2 В. При достижении 4,2 В, ЗУ малым током поддерживает АК с выдачей звукового сигнала.
- Для любопытного читателя отсылаем к статье, в свободном доступе, по применению используемого ЦАП — «Параллельный Цифро Аналоговый Преобразователь по схеме R-2R»
Автор: Владимир Шишмаков, Кузнецовск (Вараш), июнь 2022 г.
ПОДЕЛИТЕСЬ СО СВОИМИ ДРУЗЬЯМИ: П О П У Л Я Р Н О Е:
- Зарядное устройство для аккумуляторных батарей.
Электронное зарядное устройство с сигнализатором уровня зарядки аккумуляторных батарей обеспечивает визуальный контроль за состоянием процесса зарядки в ее крайних состояниях, что позволяет продлить срок эксплуатации аккумуляторов. Зарядное устройство подает световой сигнал как при напряжении на аккумуляторе ниже установленного, так и при напряжении выше предельно допустимого. Работает зарядное устройство от сети переменного тока напряжением 220 или 127 В частотой 50 Гц в условиях умеренно холодного климата при температуре окружающей среды от +5 до +35°С, относительной влажности воздуха до 85 % при температуре +22°С и пониженном атмосферном давлении до 200 мм рт.ст.
Обзор распространённых автомобильных зарядных устройств. Принципиальные схемы. Назначение. Устройство. Возможные неисправности.
Зима. Мороз. Двигатель запускается тяжело. Резко возрастает нагрузка на аккумулятор. А за состоянием аккумулятора нужно следить: проверять и вовремя его заряжать.
Летом АКБ редко когда приходится заряжать, часто хватает зарядки от генератора автомобиля, а зима — это время частого использования автомобильных зарядных устройств.
Популярность: 1 581 просм.
Самодельное зарядное для литиевых аккумуляторов 18650
Всех приветствую! Недавно возникла необходимость заряжать литиевые аккумуляторы типоразмера 18650. Покупать зарядник в магазине? не, не мой вариант. Мне нужно, что-то по сложнее, например сделать самому)). К тому же всё необходимое есть под рукой. Отлично. Поехали.
Итак, из основных комплектующих понадобится бокс, холдер, держатель — нужное подчеркнуть.
бокс, холдер, держатель.
Данные боксы фирмы Shenzhen Blossom Electronic на мой взгляд самые качественные. Сделаны из прочного пластика, имеют надёжные контакты, аккумуляторы держатся уверенно и в целом выглядит приятно.
Также потребуется контроллер заряда на микросхемы TP4056.
Товары для изобретателей Ссылка на магазин.
Контроллер TP4056.
Он представляет из себя маленькую платку размерами 26X17мм. с функциями защиты от разряда и перезаряда литиевых аккумуляторов. Подключается по micro usb, может работать с аккумуляторами 3,7 вольт, поддерживает зарядный ток около 1 Ампера.
Ниже представлен график контроля заряда TP4056.
В моём зарядном устройстве будет использована только эта функция. А контроль разряда аккумуляторов используется только в случае подключения нагрузки через эту плату.
Электроника для самоделок вкитайском магазине.
Поэтому схема получается крайне простой, припаиваем провода согласно рисунку и уже можно пользоваться устройством.
Схема .
Но на этом мы не заканчиваем, думаю не плохо бы прикрепить плату к боксу и изолировать все голые контакты.
Для крепления платы я использовал двухстороннюю вспененную клейкую ленту.
Двухсторонняя вспененная клейкая лента.
Контроллер приклеен на бокс.
Держится хорошо, просто так не оторвётся. Далее с помощью акрилового герметика я замазал всё контакты.
Акриловый герметик.
И обычным прозрачным скотчем прикрыл плату контроллера. В итоге получилось это!
Готовый девайс.
Готовый девайс.
Готовый девайс.
Да, немного страшновато вышло, но гаджет отлично работает. Главное не перепутать полярность при установке аккумуляторов, иначе сгорит TP4056 а если при этом и к блоку питания подключено, то блок тоже выпустит дым. Пожалуй это является главным недостатком данного устройства.
Что касается времени зарядки, то она зависит от емкости аккумуляторов и тока блока питания. Но в любом случае максимальный ток заряда не превысит 1-го Ампера. Если например установлено 3 аккумулятора по 2000mAh и ток заряда 1 Ампер, то по приблизительным подсчётам потребуется 6 часов. Много это или мало, решайте сами.
Ниже на фото красный светодиод говорит о идущем заряде аккумуляторов.
Идёт заряд.
Зеленый светодиод означает окончание заряда.
В итоге менее чем за 100 рублей я пользуюсь этой зарядкой уже 2 месяца. Но к сожалению остаётся вероятность неправильно воткнуть аккумулятор и лишится устройства. В целом не очень рекомендую такое решение именно по этой причине.
Также есть сборка в видео формате. Все ссылочки на комплектующие будут под видео в ютубе.